

API Gateway Authentication Bundle

This bundle provides the necessary to authenticate a request based on a specific HTTP header.

It has been written to facilitate the authentication of requests from API Gateway [https://docs.wso2.com/display/AM260/].

This bundle relies on lexik/jwt-authentication-bundle [https://github.com/lexik/LexikJWTAuthenticationBundle] and provide a specific KeyLoader.

The features it provides are:

	Provides default configuration to work with API Gateway,

	Has a failsafe mechanism for public key retrieval and embed the public keys of the default API Gateway in case of failure,

	Provides a default UserProvider service and User entity,

API Gateway

The European Commission API Gateway service allows you to deploy microservices as APIs behind the Gateway.

The Gateway offers an added layer of security and multiple useful utilities such as:

	API protection with tokens

	API lifecycle management

	API versioning

	API traffic management & throttling

	API analytics

	API management automation

	No hassle API publication with swagger

	Store of APIs to reuse

This service is based on the open source project WSO2 API Gateway [https://wso2.com/], in a distributed deployment with custom components.

Requirements

PHP

PHP greater or equal to 7.4.

Symfony

The minimal required version of Symfony is 5.

Extensions

These PHP extensions are required:

	openssl

Installation

This package has a Symfony Flex recipe [https://github.com/symfony/recipes-contrib/blob/master/ecphp/api-gw-authentication-bundle/1.0/manifest.json] that will install configuration files for you.

Default configuration files will be copied in the dev environment.

Step 1

The recommended way to install it is with Composer [https://getcomposer.org].

This package requires a PSR HTTP client and a PSR Message implementation.

We recommend using symfony/http-client and nyholm/psr7, but feel free to use
the one you prefer.

composer require symfony/http-client
composer require nyholm/psr7

composer require ecphp/api-gw-authentication-bundle

This package has a Symfony recipe [https://github.com/symfony/recipes-contrib/tree/master/ecphp/api-gw-authentication-bundle/1.0] that will provides the minimum configuration files.

Warning

Be carefull, the recipe will create enable some routes in your dev environment only.
Those routes might be considered as a security issue if they are enabled in the production environment.
Those routes are /api/token and /api/user.
Find the documentation related to those routes inside the classes themselves.
To disable them completely, just delete the file packages/config/routes/dev/api_gw_authentication.yaml from your application.

Step 2

Edit the bundle configuration by editing the file config/packages/dev/api_gw_authentication.yaml.

api_gw_authentication:
 defaults:
 env: acceptance # Available values are: acceptance, intra, production, user

Optionally, to use your own public and private key, then you do not need this package.
Simply enable the bundle lexik/jwt-authentication-bundle [https://packagist.org/packages/lexik/jwt-authentication-bundle] and follow their documentation.

However, if you still want this package and your own keys, edit the configuration as such

api_gw_authentication:
 defaults:
 env: user # Available values are: acceptance, intra, production, user
 envs:
 user:
 public: <path-to-the-public-key>
 private: <path-to-the-private-key>

The environment user is the only custom environment that you can create. It has a very limited use.
It was mostly created for the unit tests.

Step 3

This is the crucial part of your application’s security configuration.

Edit the security settings of your application by edition the file config/packages/security.yaml.

security:
 firewalls:
 default:
 anonymous: ~
 stateless: true
 guard:
 provider: api_gw_authentication # This is provided by default by the bundle.
 authenticators:
 - lexik_jwt_authentication.jwt_token_authenticator
 access_control:
 - { path: ^/api/token, role: IS_ANONYMOUS } # Optional - See step 2, enable this ONLY for dev environment
 - { path: ^/api, role: IS_AUTHENTICATED_FULLY }

This configuration example will trigger the authentication on paths starting
with /api, therefore make sure that at least such paths exists.

Feel free to change these configuration to fits your need. Have a look at
the Symfony documentation about security and Guard authentication [https://symfony.com/doc/current/security/guard_authentication.html].

Step 4

Optionally, you can override the default HTTP client.

Edit your own services.yaml file as such:

services
 cachedHttpClient:
 class: 'Symfony\Component\HttpClient\CachingHttpClient'
 arguments:
 $store: '@http_cache.store'

 api_gw_authentication.http_client:
 class: 'Symfony\Component\HttpClient\Psr18Client'
 arguments:
 $client: '@cachedHttpClient'

Configuration

Hereunder an example of configuration for this bundle.

api_gw_authentication:
 defaults:
 env: acceptance # Available values are: acceptance, intra, production, user

You may customize a specific configuration by doing:

api_gw_authentication:
 defaults:
 env: user # Available values are: acceptance, intra, production, user
 envs:
 user:
 public: <path-to-public-key-in-pem>
 private: <path-to-private-key-in-pem>

However, it is impossible to override existing API Gateway environments.

Usage

Step 1

Follow the Installation procedure.

Step 2

Configure the configuration files accordingly and the security of your Symfony application.

Step 3

Get a valid token from API Gateway.

Step 4

	Make a request to /api/user with the Authorization header.

curl -X GET "http://127.0.0.1:8000/api/user" -H "Authorization: Bearer <insert-token-here>"

At this point, the KeyLoader will try to retrieve the public key from the API Gatewey environment in use.

If it fails, it will use a local copy of the key inside the bundle.

The HttpClient in use in this bundle is a CachingHttpClient, which means that the request to API Gateway
is cached by default. So when you request the keys multiple times, only one http call will be made.

There is no lifespan configuration for a CachingHttpClient, it is forever cached until you clear the Symfony cache yourself.

Tests, code quality and code style

Every time changes are introduced into the library, Travis CI [https://travis-ci.org/ecphp/cas-bundle/builds] and Github Actions [https://github.com/ecphp/cas-bundle/actions]
run the tests written with PHPSpec [http://www.phpspec.net/].

PHPInfection [https://github.com/infection/infection] is also triggered used to ensure that your code is properly
tested.

The code style is based on PSR-12 [https://www.php-fig.org/psr/psr-12/] plus a set of custom rules.
Find more about the code style in use in the package drupol/php-conventions [https://github.com/drupol/php-conventions].

A PHP quality tool, Grumphp [https://github.com/phpro/grumphp], is used to orchestrate all these tasks at each commit
on the local machine, but also on the continuous integration tools (Travis, Github actions)

To run the whole tests tasks locally, do

composer grumphp

or

./vendor/bin/grumphp run

Here’s an example of output that shows all the tasks that are setup in Grumphp and that
will check your code

./vendor/bin/grumphp run
GrumPHP is sniffing your code!
Running task 1/13: SecurityChecker... ✔
Running task 2/13: Composer... ✔
Running task 3/13: ComposerNormalize... ✔
Running task 4/13: YamlLint... ✔
Running task 5/13: JsonLint... ✔
Running task 6/13: PhpLint... ✔
Running task 7/13: TwigCs... ✔
Running task 8/13: PhpCsAutoFixerV2... ✔
Running task 9/13: PhpCsFixerV2... ✔
Running task 10/13: Phpcs... ✔
Running task 11/13: PhpStan... ✔
Running task 12/13: Phpspec... ✔
Running task 13/13: Infection... ✔

Contributing

See the file CONTRIBUTING.md but feel free to contribute to this
project by sending Github pull requests.

Development

Maintainers

See the MAINTAINERS.txt [https://github.com/ecphp/cas-bundle/blob/master/MAINTAINERS.txt] file.

Documentation

Documentation can be built locally using Sphinx [https://www.sphinx-doc.org/].

To render the documentation locally do the following steps:

	docker-compose up

	Navigate to http://127.0.0.1:8100/

Contributors

See the Github insights page [https://github.com/ecphp/cas-bundle/graphs/contributors].

Index

 nav.xhtml

 Table of Contents

 		
 API Gateway Authentication Bundle

_static/file.png

_static/minus.png

_static/plus.png

