
ECPHP - API Gateway Authentication
Bundle documentation

Release 1.0.0

Jul 05, 2021

CONTENTS

1 API Gateway 3
1.1 Requirements . 3
1.2 Installation . 4
1.3 Configuration . 6
1.4 Usage . 6
1.5 Tests, code quality and code style . 7
1.6 Contributing . 7
1.7 Development . 7

i

ii

ECPHP - API Gateway Authentication Bundle documentation, Release 1.0.0

This bundle provides the necessary to authenticate a request based on a specific HTTP header.

It has been written to facilitate the authentication of requests from API Gateway.

This bundle relies on lexik/jwt-authentication-bundle and provide a specific KeyLoader.

The features it provides are:

• Provides default configuration to work with API Gateway,

• Has a failsafe mechanism for public key retrieval and embed the public keys of the default API Gateway in case
of failure,

• Provides a default UserProvider service and User entity,

CONTENTS 1

https://docs.wso2.com/display/AM260/
https://github.com/lexik/LexikJWTAuthenticationBundle

ECPHP - API Gateway Authentication Bundle documentation, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

API GATEWAY

The European Commission API Gateway service allows you to deploy microservices as APIs behind the Gateway.

The Gateway offers an added layer of security and multiple useful utilities such as:

• API protection with tokens

• API lifecycle management

• API versioning

• API traffic management & throttling

• API analytics

• API management automation

• No hassle API publication with swagger

• Store of APIs to reuse

This service is based on the open source project WSO2 API Gateway, in a distributed deployment with custom com-
ponents.

1.1 Requirements

1.1.1 PHP

PHP greater or equal to 7.4.

1.1.2 Symfony

The minimal required version of Symfony is 5.

3

https://wso2.com/

ECPHP - API Gateway Authentication Bundle documentation, Release 1.0.0

1.1.3 Extensions

These PHP extensions are required:

• openssl

1.2 Installation

This package has a Symfony Flex recipe that will install configuration files for you.

Default configuration files will be copied in the dev environment.

1.2.1 Step 1

The recommended way to install it is with Composer.

This package requires a PSR HTTP client and a PSR Message implementation.

We recommend using symfony/http-client and nyholm/psr7, but feel free to use the one you prefer.

composer require symfony/http-client
composer require nyholm/psr7

composer require ecphp/api-gw-authentication-bundle

This package has a Symfony recipe that will provides the minimum configuration files.

Warning: Be carefull, the recipe will create enable some routes in your dev environment only. Those routes
might be considered as a security issue if they are enabled in the production environment. Those routes are
/api/token and /api/user. Find the documentation related to those routes inside the classes themselves. To
disable them completely, just delete the file packages/config/routes/dev/api_gw_authentication.yaml
from your application.

1.2.2 Step 2

Edit the bundle configuration by editing the file config/packages/dev/api_gw_authentication.yaml.

api_gw_authentication:
defaults:

env: acceptance # Available values are: acceptance, intra, production, user

Optionally, to use your own public and private key, then you do not need this package. Simply enable the bundle
lexik/jwt-authentication-bundle and follow their documentation.

However, if you still want this package and your own keys, edit the configuration as such

api_gw_authentication:
defaults:

env: user # Available values are: acceptance, intra, production, user
envs:

user:
(continues on next page)

4 Chapter 1. API Gateway

https://github.com/symfony/recipes-contrib/blob/master/ecphp/api-gw-authentication-bundle/1.0/manifest.json
https://getcomposer.org
https://github.com/symfony/recipes-contrib/tree/master/ecphp/api-gw-authentication-bundle/1.0
https://packagist.org/packages/lexik/jwt-authentication-bundle

ECPHP - API Gateway Authentication Bundle documentation, Release 1.0.0

(continued from previous page)

public: <path-to-the-public-key>
private: <path-to-the-private-key>

The environment user is the only custom environment that you can create. It has a very limited use. It was mostly
created for the unit tests.

1.2.3 Step 3

This is the crucial part of your application’s security configuration.

Edit the security settings of your application by edition the file config/packages/security.yaml.

security:
firewalls:

default:
anonymous: ~
stateless: true
guard:

provider: api_gw_authentication # This is provided by default by the␣
→˓bundle.

authenticators:
- lexik_jwt_authentication.jwt_token_authenticator

access_control:
- { path: ^/api/token, role: IS_ANONYMOUS } # Optional - See step 2, enable this␣

→˓ONLY for dev environment
- { path: ^/api, role: IS_AUTHENTICATED_FULLY }

This configuration example will trigger the authentication on paths starting with /api, therefore make sure that at least
such paths exists.

Feel free to change these configuration to fits your need. Have a look at the Symfony documentation about security and
Guard authentication.

1.2.4 Step 4

Optionally, you can override the default HTTP client.

Edit your own services.yaml file as such:

services
cachedHttpClient:

class: 'Symfony\Component\HttpClient\CachingHttpClient'
arguments:

$store: '@http_cache.store'

api_gw_authentication.http_client:
class: 'Symfony\Component\HttpClient\Psr18Client'
arguments:

$client: '@cachedHttpClient'

1.2. Installation 5

https://symfony.com/doc/current/security/guard_authentication.html
https://symfony.com/doc/current/security/guard_authentication.html

ECPHP - API Gateway Authentication Bundle documentation, Release 1.0.0

1.3 Configuration

Hereunder an example of configuration for this bundle.

api_gw_authentication:
defaults:

env: acceptance # Available values are: acceptance, intra, production, user

You may customize a specific configuration by doing:

api_gw_authentication:
defaults:

env: user # Available values are: acceptance, intra, production, user
envs:

user:
public: <path-to-public-key-in-pem>
private: <path-to-private-key-in-pem>

However, it is impossible to override existing API Gateway environments.

1.4 Usage

1.4.1 Step 1

Follow the Installation procedure.

1.4.2 Step 2

Configure the configuration files accordingly and the security of your Symfony application.

1.4.3 Step 3

Get a valid token from API Gateway.

1.4.4 Step 4

• Make a request to /api/user with the Authorization header.

curl -X GET "http://127.0.0.1:8000/api/user" -H "Authorization: Bearer
<insert-token-here>"

At this point, the KeyLoader will try to retrieve the public key from the API Gatewey environment in use.

If it fails, it will use a local copy of the key inside the bundle.

The HttpClient in use in this bundle is a CachingHttpClient, which means that the request to API Gateway is
cached by default. So when you request the keys multiple times, only one http call will be made.

There is no lifespan configuration for a CachingHttpClient, it is forever cached until you clear the Symfony cache
yourself.

6 Chapter 1. API Gateway

ECPHP - API Gateway Authentication Bundle documentation, Release 1.0.0

1.5 Tests, code quality and code style

Every time changes are introduced into the library, Travis CI and Github Actions run the tests written with PHPSpec.

PHPInfection is also triggered used to ensure that your code is properly tested.

The code style is based on PSR-12 plus a set of custom rules. Find more about the code style in use in the package
drupol/php-conventions.

A PHP quality tool, Grumphp, is used to orchestrate all these tasks at each commit on the local machine, but also on
the continuous integration tools (Travis, Github actions)

To run the whole tests tasks locally, do

composer grumphp

or

./vendor/bin/grumphp run

Here’s an example of output that shows all the tasks that are setup in Grumphp and that will check your code

./vendor/bin/grumphp run
GrumPHP is sniffing your code!
Running task 1/13: SecurityChecker... XXX
Running task 2/13: Composer... XXX
Running task 3/13: ComposerNormalize... XXX
Running task 4/13: YamlLint... XXX
Running task 5/13: JsonLint... XXX
Running task 6/13: PhpLint... XXX
Running task 7/13: TwigCs... XXX
Running task 8/13: PhpCsAutoFixerV2... XXX
Running task 9/13: PhpCsFixerV2... XXX
Running task 10/13: Phpcs... XXX
Running task 11/13: PhpStan... XXX
Running task 12/13: Phpspec... XXX
Running task 13/13: Infection... XXX

1.6 Contributing

See the file CONTRIBUTING.md but feel free to contribute to this project by sending Github pull requests.

1.7 Development

1.7.1 Maintainers

See the MAINTAINERS.txt file.

1.5. Tests, code quality and code style 7

https://travis-ci.org/ecphp/cas-bundle/builds
https://github.com/ecphp/cas-bundle/actions
http://www.phpspec.net/
https://github.com/infection/infection
https://www.php-fig.org/psr/psr-12/
https://github.com/drupol/php-conventions
https://github.com/phpro/grumphp
.github/CONTRIBUTING.md
https://github.com/ecphp/cas-bundle/blob/master/MAINTAINERS.txt

ECPHP - API Gateway Authentication Bundle documentation, Release 1.0.0

1.7.2 Documentation

Documentation can be built locally using Sphinx.

To render the documentation locally do the following steps:

• docker-compose up

• Navigate to http://127.0.0.1:8100/

1.7.3 Contributors

See the Github insights page.

8 Chapter 1. API Gateway

https://www.sphinx-doc.org/
http://127.0.0.1:8100/
https://github.com/ecphp/cas-bundle/graphs/contributors

	API Gateway
	Requirements
	PHP
	Symfony
	Extensions

	Installation
	Step 1
	Step 2
	Step 3
	Step 4

	Configuration
	Usage
	Step 1
	Step 2
	Step 3
	Step 4

	Tests, code quality and code style
	Contributing
	Development
	Maintainers
	Documentation
	Contributors

